

Study of feasibility of electronics and detectors to determine bunch by bunch beam properties for the EIC ring-ring designs

Nicola Minafra

University of Kansas

C. Royon, M. J. Murray A. Camsonne KU JLAB

Electron Ion Collider designs

Lower luminosity

560 MHz RF 330 bunches 33 ns between bunches Electron current up to 1.2A Ion current up to 0.46 A

High luminosity

560 MHz RF
1320 bunches
10 ns between bunches
Electron current up to 2.4 A
Ion current up to 0.92 A

Low and Medium energy

476 MHz RF
1540x2 bunches
2 .1 ns between bunches
Electron current up to 2.8 A
Ion current up to 0.75 A

High energy

476 or 119 MHz RF 385 x 2 bunches 8.4 ns between bunches Electron current up to 0.75 A Ion current up to 0.71 A

Bunch by bunch properties: example Compton polarimeter

eRHIC Linac Ring:

 several sources with different polarization used, need to separate 10 MHz beam structure

eRHIC Ring Ring – JLEIC

Energy (GeV)	Current (A)	1 pass laser (10W)	FP cavity (10 kW)	
	Current (A)	Expected rate (MHz)	Expected rate (MHz)	
3	3	26.8	3100	
5	3	16.4	1880	
10	0.72	1.8	210	

Only considering Compton cross-section: no background

EIC Detector R&D Progress Report June 2016

Problem: detect MIPs with bunch separation down to 2 ns

- Can bunches be temporally separated for all configurations (down to 2 ns)?
- Is it possible to uniquely associate a detected particle with the correct bunch crossing?
- Are there any scaling issues to go from 1 channel to 200 channels

(needed for electron polarimetry for example)

Detector with a signal faster than ~2 ns:

1 particle every bunch crossing per channel

(expected rate for 10 kW laser power >3 GHz per 5 cm²)

Sensor, amplifier, digitizer, DAQ to be designed

Detector with a time precision better than ~2 ns:

- Increased segmentation
- Less challenging detector requirements, but more channels
- Digitizer, DAQ to be designed

Is it possible to design a MIP detector with a signal shorter than 2 ns?

Diamond sensors are among the fastest available

The collection time t_c depends on the thickness d

$$t_c \sim d/v_s$$

NOTE: the collected charge $Q_c = \int i(t) dt$ also depends on the thickness d $Q_c \sim d$

However, the deep current mainly depends on the carriers' velocities, i.e. electric field $|i_{MAX}| \sim {^Qc}/{t_c}$

Is it possible to design a MIP detector with a signal shorter than 2 ns?

Ultra Fast Silicon Detectors: as fast as diamond, but with a gain layer!

Fast collection time (50 µm thick) and larger signals, thanks to the gain layer

Electronics for very fast detectors

A two channels board was designed and manufactured for the characterization of different solid state detectors.

The board was optimized to achieve a good time precision with different sensors, however it can be modified to have an output signal shorter (but less precise)

Sensors up to 16x13 mm² can be glued and bonded.

The components can be easily adapted to accommodate:

- Diamond sensors: ~1 nA bias current, both polarities, small signal
- Silicon seonsors: ~100 nA bias current, small signal
- UFSD ~100 nA bias current, ~ larger signal
- SiPM: ~ 5 uA bias current, large signal

Electronics for very fast detectors

This board was also used to test the performance of a diamond sensor using a Sr^{90} β - source.

500 µm pcCVD diamond

Is it possible to design a MIP detector with a signal shorter than 2 ns (modifying the KU board)?

The amplifier can be modified to have a faster signal but worse time precision.

Is it possible to design a MIP detector with a signal shorter than 2 ns?

Simulated results:

Laser tests for silicon sensors

To test the high rate capabilities of the detector a laser pulse can be used

Using a chain of beam splitter it is possible to introduce several delays on the light path and produce two pulses with a separation of:

 $\Delta t \sim 2 L / c$

Infrared laser with fast pulses:

PILAS Gain-switched laser diode module

1060 nm, FWHM < 50 ps

Repetition rate < 10 MHz

KU Capabilities

KU has already a test stand with a picosecond laser, but the maximum rate is limited to 10 MHz

1080 nm picosecond laser, 50 ps wide pulses with peak power > 100 mW set at 10 cm away from the sensor board. The support can be moved XY with micrometric accuracy.

Timeline

Budget request

Task		Amount direct (k\$)	Amount with Overhead (k\$)	Cumulative (k\$)
Simulation	3 months postdoc	18	27.81	27.81
Amplifier modification	Production cost	5	7.725	35.535
Optimized amplifier design	3 months postdoc	18	27.81	63.345
Detector	Production cost	2.5	3.86	67.20
Multichannel amplifier	Production cost	20	30.9	98.1
Total		63.5	98.1	

Will participate if approved: 1 el. engineer (undergrad), 1 physicist (graduate) (funded by KU)

Budget scenario

Budget	Amount (k\$)	Deliverables
Full	98.1	Optimized electronics and detector, beam test with multichannel amplifier
-20 %	82.8	Optimized electronics design, laser test with one channel modified amplifier
-40 %	62.1	Simulation and optimized amplifier design, laser or Sr ⁹⁰ test

Summary

Preliminary simulations show that short pulses can be generated with a reasonable signal to noise ratio

- Simulate different sensors, different size (thickness, capacitance, ...)
- Modify existing amplifier and test with existing detector
- Design multichannel optimized amplifier
- Built multichannel amplifier
- Laser tests for high rate
- MIP (efficiency) test on particle beam

Study of feasibility of electronics and detectors to determine bunch by bunch beam properties for the EIC ring-ring designs

Nicola Minafra

University of Kansas

C. Royon, M. J. Murray A. Camsonne KU JLAB

Bunch by bunch properties: example Compton polarimeter

eRHIC Linac Ring:

 several sources with different polarization used, need to separate 10 MHz beam structure

eRHIC Ring Ring – JLEIC

Energy	Current	1 pass laser (10 W)	FP cavity (1 kW)		
(GeV)	(A)	Rate (MHz)	Time (1%)	Rate (MHz)	Time (1%)	
3 GeV	3	26.8	161 ms /	310	14 ms	
5 GeV	3	16.4	106 ms	188	9 ms	
10 GeV	0.72	1.8	312 ms	21	27 ms	

Only considering Compton cross-section: no background

Example polarization lifetime JLEIC

Energy (GeV)	τ_{inj} (min)	τ_{opt_meas} (min)	$(P_{ave}/P_i)_{\max}$ *
3	12	160	0.94
5	8	60	0.88
7	4	20	0.85
9	0.8	6	0.89
10	0.5	2.5	0.86

Polarization measurement of the order of second desired for short measurement at different point of the beam life

If same number of bunches and bunch-by-bunch polarization is needed, measurement duration has to be multiplied by number of bunches from 700 to 3300: high laser power cavity is needed

Main Parameters eRHIC ring-ring for Maximum Luminosity

		No Hadron Cooling		Strong Hadron Cooling	
Parameter	Units	Protons	Electrons	Protons	Electrons
Center of Mass Energy	GeV	10	00	100	
Beam Energy	GeV	275	10	275	10
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1
Beam Current	mA	456	1253	920	2480
Number of Bunches		33	30	132	0
Hor. Emittance	nm	17.6	24.4	8.3	24.4
Vertical Emittance	nm	6.76	3.5	3.1	1.7
β_{x^*}	cm	94	62	47	16
β_y^*	cm	4.2	7.3	2.1	3.7
$\sigma_{x}^{"*}$	mrad	0.137	0.2	0.13	0.39
σ_{y} '*	mrad	0.401	0.22	0.38	0.21
Beam-Beam ξ _x		0.014	0.084	0.012	0.047
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084
τ_{IBS} long/hor	hours	10/8	-	4.4/2.0	-
Synchr. Rad Power	MW	-	6.5	-	10
Bunch Length	cm	7	0.3	3.5	0.3
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.21	

 $E_{\rm p}$ = 275 GeV, $E_{\rm e}$ = 10 GeV

JLEIC Baseline New Parameters

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)	
		р	е	р	е	р	е
Beam energy	GeV	40	3	100	5	100	10
Collision frequency	MHz	4	76	476		476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7
Beam current	Α	0.75	2.8	0.75	2.8	0.75	0.71
Polarization	%	80	80	80	80	80	75
Bunch length, RMS	cm	3	1	1	1	2.2	1
Norm. emitt., hor./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4
Horizontal & vertical β*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8
Vert. beam-beam param.		0.015	0.092	0.015	0.068	0.008	0.034
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵
Detector space, up/down	m	3.6/7	3.2/3	3.6/7	3.2/3	3.6/7	3.2/3
Hourglass(HG) reduction		1		0.87		0.75	
Luminosity/IP, w/HG, 10 ³³	cm ⁻² s ⁻¹	2.5		21.4		5.9	

Ring circumference : 2.4 km Max number of bunches :3416

Number of bunches: 1540 * 2 two macrobunches

with 2.1 ns spacing between electron bunches